Clebsch-Gordan coefficients for the corepresentations of Shubnikov point groups. II. Cubic groups

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1981 J. Phys. A: Math. Gen. 141543
(http://iopscience.iop.org/0305-4470/14/7/011)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 14:37

Please note that terms and conditions apply.

Clebsch-Gordan coefficients for the corepresentations of Shubnikov point groups: II. Cubic groups

J N Kotzev and M I Aroyo
Physics Department, University of Sofia, BG-1126, Sofia, Bulgaria

Received 3 December 1980

Abstract

On the basis of the generalised Racah lemma for the corepresentations (coreps) of antiunitary groups, a general method is given for the calculation of Clebsch-Gordan coefficients (CGC) for the coreps of all 90 antiunitary Shubnikov magnetic point groups. Tables of basic functions, compatibility tables, multiplication tables and CGC for single and double coreps of all antiunitary, cubic point groups for odd and even basis (with respect to space inversion) are presented. The tables are necessary for problems in solid state spectroscopy and crystal field theory (selection rules, Wigner-Eckart theorem).

1. Introduction

As was shown by Wigner (1959), the operator of time inversion θ and all its combinations with unitary operators are antiunitary. The groups of unitary and antiunitary operators are known as antiunitary groups. Under the action of such group elements all quantum mechanical quantities transform by Wigner corepresentations (coreps), not by the ordinary representations. A detailed presentation of the coreps theory and its applications in solid state physics are given in the books of Bradley and Cracknell (1972) and Cracknell (1974). For a more efficient application of antiunitary groups and their coreps in a number of quantum mechanical problems, it is necessary to reconsider the theory of irreducible tensorial sets (algebra of Racah) for the case of coreps. The main component of this theory is the Clebsch-Gordan coefficient (CGC) for the coreps. This was discussed for the first time by Kotzev (1972, 1974), Aviran and Litvin (1973), Rudra (1974), Sacata (1974) and van den Broek (1979), whose results were in good agreement with those of Kotzev (1972). Another approach to the cGC calculation was given by Dirl (1980), who assumed that convenient CGC for the normal subgroup of the antiunitary group were given (a historical review could be found in Rudra and Sikdar (1976) and Kotzev and Aroyo (1980)). In recent papers (Rudra and Sikdar 1976, 1977) there were reports about the calculation of the CGC for the Shubnikov point groups, but only in the case of even, under space inversion, basic functions (the tables were not contained in Rudra and Sikdar (1976, 1977)). A new, more effective method for the calculation of the CGC for the coreps, based on the generalised Racah lemma, was suggested by Kotzev and Aroyo (1977) (see also Kotzev and Aroyo (1977, 1978a, b, c, 1979) where the CGC for the coreps of all 90 antiunitary Shubnikov point groups, for single and double valued coreps in the case of even and odd (under space inversion) basic functions, were calculated and tabulated). Unfortunately these editions are in insufficient circulation and they remain difficult of access for a great number of
specialists. The aim of this paper is to systematise the results of Kotzev and Aroyo (1978a, 1979) and to make the cGC for the coreps of antiunitary cubic groups more accessible.

2. Method of calculation

The CGC for the coreps of antiunitary groups are the matrix elements

$$
\begin{equation*}
\left[\alpha_{1} a_{1} \alpha_{2} a_{2} \mid \alpha \rho_{\alpha} a\right]=U_{a_{1} a_{2}, \alpha \rho_{\alpha} a}^{\alpha} a \tag{1}
\end{equation*}
$$

of a unitary matrix $U^{\alpha_{1} \alpha_{2}}$ which reduces the inner Kronecker product of the irreducible coreps $D^{\alpha_{1}}$ and $D^{\alpha_{2}}$ to a block diagonal form. The index $\rho_{\alpha}=1, \ldots, C_{\alpha}^{\alpha_{1} \alpha_{2}}$ specifies the equivalent D^{α} which are contained $C_{\alpha}^{\alpha_{1} \alpha_{2}}$ times in the reduction of $D^{\alpha_{1}} \boxtimes D^{\alpha_{2}}$. The matrices $U^{\alpha_{1} \alpha_{2}}$ are chosen in such a way that all $D^{\alpha_{\rho}}\left(\rho_{\alpha}=1, \ldots, C_{\alpha}^{\alpha_{\alpha} \alpha_{2}}\right)$ identically coincide, i.e. $D^{\alpha \rho_{\alpha}}=D^{\alpha}$. The generalised Racah lemma (Kotzev and Aroyo 1977, 1980), which concerns the relation between the CGC $U^{\alpha_{1} \alpha_{2}}$ for the group A and the corresponding coefficients $U^{\beta_{1} \beta_{2}}$ for a subgroup $\mathrm{B} \subset \mathrm{A}$, has the following matrix form:

$$
\begin{equation*}
\left(\bigoplus_{\beta_{i} \in \alpha_{i}} U^{\beta_{1} \beta_{2}}\right)=\bar{U}^{\alpha_{1} \alpha_{2}}\left(X^{\alpha_{1} \alpha_{2}}\right)^{-1} \tag{2a}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{U}^{\alpha_{1} \alpha_{2}}=\left(S^{\alpha_{1}} \boxtimes S^{\alpha_{2}}\right)^{-1} U^{\alpha_{1} \alpha_{2}}\left(\bigoplus_{\alpha \rho_{\alpha}} S^{\alpha}\right) . \tag{2b}
\end{equation*}
$$

Here S^{α} are the subduction matrices of the coreps D^{α} in their subduction to the group $B \subset A$; the matrix $\bar{U}^{\alpha_{1} \alpha_{2}}$ contains the CGC for $D^{\alpha_{1}} \boxtimes D^{\alpha_{2}}$, but in a new basis; $X^{\alpha_{1} \alpha_{2}}$ is the matrix of the so-called isoscalar factors. The main difference from the classical Racah lemma (Racah 1949) is that in the case of coreps all isoscalar factors should be real, and so $X^{\alpha_{1} \alpha_{2}}$ is orthogonal. A proof of this statement and a more detailed exposé of this method can be found in Kotzev and Aroyo (1977, 1980).

All 122 Shubnikov (magnetic) point groups are subgroups of the full orthogonal group $O(3)$, supplemented with time inversion- $\infty \infty \overline{1} 1^{\prime}-O(3) \otimes \Theta$, where $\Theta=\{1, \theta\}$. There are three types of Shubnikov point groups-32 ordinary point groups, 32 grey point groups and 58 black and white point groups. For the sake of convenience in physical applications, the CGC are calculated both for even (Kotzev and Aroyo 1978a, b, c) and odd (Kotzev and Aroyo 1979) basic functions. The choice of the basic functions for the grey groups coincides with the functions given in Leushin (1968), and for the black and white groups the functions are derived by the method given in Kotzev and Aroyo (1977).

Every even (odd) function $\Phi_{a}^{\alpha}\left(\Psi_{a}^{\alpha}\right)$ transforms as the a th component of the irreducible corep D^{α}, and is a linear combination of the form

$$
\begin{align*}
& \Phi_{a}^{\alpha \tau_{\alpha}} \equiv\left|(j+) \alpha \tau_{\alpha} a\right\rangle=\sum_{m} \varphi_{m}^{j+} S_{m, \alpha \tau_{\alpha} a}^{j+}, \tag{3a}\\
& \Psi_{a}^{\alpha \tau_{\alpha}} \equiv\left|(j-) \alpha \tau_{\alpha} a\right\rangle=\sum_{m} \psi_{m}^{j-} S_{m, \alpha \tau_{\alpha} a}^{j-}, \tag{3b}
\end{align*}
$$

where the functions

$$
\begin{equation*}
\varphi_{m}^{j+} \equiv|j m\rangle, \quad m=j, j-1, \ldots,-j, \tag{4a}
\end{equation*}
$$

$$
\begin{equation*}
\psi_{m}^{j-} \equiv|\bar{j} m\rangle \quad m=j, j-1, \ldots,-j \tag{4b}
\end{equation*}
$$

form a basis of an even (positive) irreducible corep $D^{i+}(4 a)$, or of an odd (negative) irreducible corep $D^{i-}(4 b)$ of the generalised full orthogonal group $O(3) \otimes \Theta$, and they transform as eigenfunctions of the operator of angular momentum. The functions are chosen in such a way that

$$
\begin{align*}
& C_{n}^{z}|j m\rangle=\exp (2 \pi \mathrm{i} m / n)|j m\rangle, \tag{5a}\\
& C_{n}^{z}|\bar{j} m\rangle=\exp (2 \pi \mathrm{i} m / n)|\bar{j} m\rangle, \tag{5b}\\
& I|j m\rangle=|j m\rangle, \tag{6a}\\
& I|\bar{j} m\rangle=-|\bar{j} m\rangle, \tag{6b}\\
& \theta|j m\rangle=(-1)^{j-m}|j-m\rangle, \tag{7a}\\
& \theta|\bar{\jmath} m\rangle=(-1)^{i-m}|\bar{J}-m\rangle . \tag{7b}
\end{align*}
$$

As was shown by Kotzev (1972, see also Kotzev and Aroyo 1978a) the cGc for the coreps of $\mathrm{O}(3) \otimes \Theta$ coincide with the well known Wigner coefficients ($j_{1} m_{1} j_{2} m_{2} \mid j m$),

$$
\begin{equation*}
\left[j_{1} m_{1} j_{2} m_{2} \mid j 1 m\right] \equiv\left(j_{1} m_{1} j_{2} m_{2} \mid j m\right) \tag{8}
\end{equation*}
$$

To reduce the volume of the calculation, the antiunitary double point groups are arranged in 21 isomorphic sets (table 1). The groups in every row of the table are isomorphic with the exception of the last one. It is a centrosymmetrical group, which is related to the proper rotation group (first column) of the set.

The cGc for the coreps of the Shubnikov point groups can be calculated with the help of the generalised Racah lemma, either directly from (8), i.e. using the Wigner coefficients as starting coefficients for every group, or by a successive descent down the subgroup chain:

$$
\begin{equation*}
\mathrm{O}(3) \otimes \Theta \supset \mathrm{G} \otimes \Theta \supset \cdots \supset \mathrm{C}_{1} . \tag{9}
\end{equation*}
$$

In our calculations we have used the second method, which proves to be more efficient, for proper rotation groups. (So, the coefficients (8) are starting coefficients for the groups $\mathrm{O} \otimes \Theta$ and $D_{6} \otimes \Theta$ only.) Naturally for such groups, $\mathrm{G}_{0} \subset \mathrm{SO}(3) \otimes \Theta$, where $\mathrm{G}_{0}=\mathrm{G1} 1^{\prime}$ or $\mathrm{G}(\mathrm{H})$, the choice of even or odd basis is of no significance.

The calculation of the cGc for the coreps of the other groups in the isomorphic sets is carried out according to the following scheme.

Figure 1. Calculation of CGC.
We should note that not only are the matrices of the coreps of all isomorphic groups equivalent, but they identically coincide. To each set of isomorphic groups is related a centrosymmetrical group $\mathrm{G} \overline{1}=\mathrm{G}_{0} \otimes \mathrm{C}_{i}, \mathrm{C}_{i}=\{E, I\}$ (fourth column of table 1), whose coreps are in a direct correspondence with the coreps of the group of proper rotations (first column), there being two irreducible coreps (even $D^{\alpha+}$ and odd $D^{\alpha-}$) of G1 $1^{\prime} \overline{1}$ or $G(H) \overline{1}$ for each one of the proper rotation group.

The even coreps are such that

$$
\begin{align*}
& D^{\alpha+}(R)=D^{\alpha}(R), \quad R \in \mathrm{G}_{0}, \tag{10a}\\
& D^{\alpha+}(I R)=D^{\alpha}(R),
\end{align*}
$$

while the odd satisfy

$$
\begin{array}{ll}
D^{\alpha-}(R)=D^{\alpha}(R), & R \in \mathrm{G}_{0} \tag{10b}\\
D^{\alpha-}(I R)=-D^{\alpha}(R), & R \in \mathrm{G}_{0}
\end{array}
$$

where D^{α} are the coreps of the group $\mathrm{G}_{0} \subset \mathrm{G}_{0} \otimes \mathrm{C}_{i}$.
The reduction matrices ensuring the transitions $\left(D^{\alpha} \uparrow G \overline{1}\right)=D^{\alpha+}$ or $\left(D^{\alpha} \uparrow G \overline{1}\right)=D^{\alpha-}$ are identity matrices. From the Racah lemma it follows that $X^{\alpha_{1} \alpha_{2}}$ is also an identity matrix. Using the generalised Racah lemma (as it gives the relation between cGc of a group and its subgroups, the lemma can be used for the determination of the CGC of the supergroup, starting with the coefficients of its subgroups), having in mind that $C_{\alpha}^{\alpha_{1} \alpha_{2}}$ for these groups are the same as for the groups before supplementing with the inversion, except that

$$
\begin{align*}
& D^{\alpha_{1} \pm} \mathbb{区} D^{\alpha_{2} \pm}=\bigoplus_{\alpha} C_{\alpha}^{\alpha_{1} \alpha_{2}} D^{\alpha+}, \tag{11a}\\
& D^{\alpha_{1} \mp} \boxtimes D^{\alpha_{2} \pm}=\bigoplus_{\alpha} C_{\alpha}^{\alpha_{1} \alpha_{2}} D^{\alpha-}, \tag{11b}
\end{align*}
$$

and supposing that $\rho_{\alpha+}=\rho_{\alpha-}=\rho_{\alpha}$, we obtain the following relations:

$$
\begin{equation*}
\left[\alpha_{1} a_{1} \alpha_{2} a_{2} \mid \alpha \rho_{\alpha} a\right]=\left[\alpha_{1}^{ \pm} a_{1} \alpha_{2}^{ \pm} a_{2} \mid \alpha^{+} \rho_{\alpha^{+}} a\right]=\left[\alpha_{1}^{\mp} a_{1} \alpha_{2}^{ \pm} a_{2} \mid \alpha^{-} \rho_{\alpha-} a\right] . \tag{12}
\end{equation*}
$$

For the groups of $G \overline{1}^{\prime}, \overline{\mathrm{G}}(\mathrm{H})$ (second column of table 1) and $\overline{\mathrm{G}} 1^{\prime}, \overline{\mathrm{G}} \overline{1}^{\prime}, \overline{\mathrm{G}}(\overline{\mathrm{H}})$ (third column of table 1) types, which include inversion axes and inversion planes of symmetry, but do not contain the inversion I itself, we can use again the generalised Racah lemma, with CGC of the corresponding centrosymmetrical group as starting coefficients (these groups are subgroups of the related centrosymmetrical group) (figure 1). The form of the coefficients for these groups depends on the choice of the functions with respect to the space inversion. We will note that if both of the functions are even $\Phi_{a_{1}}^{\alpha_{1}} \Phi_{a_{2}}^{\alpha_{2}}$ or odd $\Psi_{a_{1}}^{\alpha_{1}} \Psi_{a_{2}}^{\alpha_{2}}$, their product decomposes into even functions. If one of the functions is odd, and the other even, then the product decomposes into odd functions. In all the cases the products $\Phi_{a_{1}}^{\alpha_{1}} \Phi_{a_{2}}^{\alpha_{2}} ; \Psi_{a_{1}}^{\alpha_{1}} \Psi_{a_{2}}^{\alpha_{2}} ; \Phi_{a_{1}}^{\alpha_{1}} \Psi_{a_{2}}^{\alpha_{2}} ; \Psi_{a_{1}}^{\alpha_{1}} \Phi_{a_{2}}^{\alpha_{2}}$ transform by the equivalent coreps $D^{\alpha_{1}} \boxtimes D^{\alpha_{2}}$, which is written symbolically in the form

$$
\alpha_{1}^{\mathrm{e}} \times \alpha_{2}^{\mathrm{c}} \sim \alpha_{1}^{\mathrm{o}} \times \alpha_{2}^{\mathrm{o}} \sim \alpha_{1}^{\mathrm{e}} \times \alpha_{2}^{\mathrm{o}} \sim \alpha_{1}^{\mathrm{o}} \times \alpha_{2}^{\mathrm{e}} .
$$

Here the indices ' e ' and ' o ' stand for even and odd choices of the basic functions. The symbols ' g ' and ' u ' or ' + ', ' - ' are not used because there is a possibility of perceiving these functions as basic functions of even and odd coreps $D^{\alpha \pm}$ of the centrosymmetrical groups.

For the groups of the type $\mathrm{G} \overline{1}^{\prime}$ (or $\overline{\mathrm{G}}(\mathrm{H})$) which do not have improper elements in the unitary subgroup, the transitions ($\left.D^{\alpha+} \downarrow \mathrm{G} \overline{1}\right)^{\prime}=D^{\alpha^{c}}$ and $\left(D^{\alpha-} \downarrow \mathrm{G} \overline{1}^{\prime}\right)=D^{\alpha^{0}}$ are carried out by the reduction matrices of the type $S^{\alpha+}=E$ and $S^{\alpha-}=i E$. Using the generalised Racah lemma and supposing that $\rho_{\alpha+}=\rho_{\alpha^{0}}=\rho_{\alpha^{e}}$, we obtain the following relations for
the CGC for $G \overline{1}^{\prime}$ (or $\bar{G}(H)$) groups:

$$
\begin{align*}
{\left[\alpha_{1}^{+} a_{1} \alpha_{2}^{+} a_{2} \mid \alpha \rho_{\alpha} a\right] } & =\left[\alpha_{1}^{\mathrm{e}} a_{1} \alpha_{2}^{\mathrm{e}} a_{2} \mid \alpha^{\mathrm{e}} \rho_{\alpha} a\right] \\
& =-\left[\alpha_{1}^{\mathrm{o}} a_{1} \alpha_{2}^{\mathrm{o}} a_{2} \mid \alpha^{\mathrm{e}} \rho_{\alpha} a\right] \\
& =\left[\alpha_{1}^{\mathrm{o}} a_{1} \alpha_{2}^{\mathrm{e}} a_{2} \mid \alpha^{\mathrm{o}} \rho_{\alpha} a\right] \\
& =\left[\alpha_{1}^{\mathrm{e}} a_{1} \alpha_{2}^{\mathrm{o}} a_{2} \mid \alpha^{\mathrm{o}} \rho_{\alpha} a\right] . \tag{13}
\end{align*}
$$

For the groups of the type $\overline{\mathrm{G}} 1^{\prime}$ (or $\overline{\mathrm{G}} \overline{1}^{\prime}, \overline{\mathrm{G}}(\overline{\mathrm{H}})$), which have improper elements in the unitary subgroup, the transitions $\left(D^{\alpha+} \downarrow \overline{\mathrm{G}} 1^{\prime}\right)=D^{\alpha^{e}}$ and $\left(D^{\alpha-} \downarrow \overline{\mathrm{G}} 1^{\prime}\right)=D^{\alpha^{\prime 0}}, \alpha^{\prime} \neq \alpha$, are carried out by the reduction matrices $S^{\alpha+}=E$ and $S^{\alpha-} \neq E$. Again by the generalised Racah lemma, we obtain that the cGc for even bases coincide with the corresponding CGC of the related centrosymmetrical group. In the case of odd basic functions, most of the coefficients either coincide with those of even bases or differ from them by a sign. A more essential difference exists when in the decomposition of the Kronecker product of $D^{\alpha_{1}} \boxtimes D^{\alpha_{2}}$ are contained equivalent coreps, i.e. $C_{\alpha}^{\alpha_{1} \alpha_{2}}>1$.

So, in the case of even bases, it is sufficient to calculate the cGC for the coreps of the double antiunitary Shubnikov groups just for 21 out of 90 groups (i.e. for the proper rotation groups, which serve as representatives of the isomorphic sets).

In the case of odd bases it is sufficient to calculate the cGC only for the groups of the third column of table $1, \overline{\mathrm{G}} 1^{\prime}, \overline{\mathrm{G}} \overline{1}^{\prime}, \overline{\mathrm{G}}(\overline{\mathrm{H}})$. For the other groups of the isomorphic sets the relation between the CGC of even and odd bases is trivial.

Table 1. Shubnikov point groups.

	$\begin{aligned} & G 1^{\prime} \\ & G(H) \end{aligned}$	$\begin{aligned} & \mathrm{G} \overline{1}^{\prime} \\ & \overline{\mathrm{G}}(\mathrm{H}) \end{aligned}$	$\begin{aligned} & \overline{\mathrm{G}} 1^{\prime} \mathrm{G} 1^{\prime} \\ & \overline{\mathrm{G}}(\overline{\mathrm{H}}) \end{aligned}$	$\begin{aligned} & G 1^{\prime} \overline{1} \\ & G(H) \overline{1} \end{aligned}$
Cubic	$\begin{aligned} & \mathrm{O} \otimes \Theta \\ & \mathrm{~T} \otimes \Theta \\ & \mathrm{O}(\mathrm{~T}) \end{aligned}$	$\begin{aligned} & \mathrm{O}_{\mathrm{h}}(\mathrm{O}) \\ & \mathrm{T}_{\mathrm{h}}(\mathrm{~T}) \\ & \mathrm{T}_{\mathrm{d}}(\mathrm{~T}) \end{aligned}$	$\mathrm{T}_{\mathrm{d}} \otimes \Theta \mathrm{O}_{\mathrm{h}}\left(\mathrm{T}_{\mathrm{d}}\right)$	$\begin{aligned} & \mathrm{O}_{\mathrm{h}} \otimes \Theta \\ & \mathrm{~T}_{\mathrm{h}} \otimes \Theta \\ & \mathrm{O}_{\mathrm{h}}\left(\mathrm{~T}_{\mathrm{h}}\right) \end{aligned}$
Tetragonal	$\begin{aligned} & \mathrm{D}_{4} \otimes \Theta \\ & \mathrm{C}_{4} \otimes \Theta \\ & \mathrm{D}_{4}\left(\mathrm{C}_{4}\right) \\ & \mathrm{D}_{4}\left(\mathrm{D}_{2}\right) \\ & \mathrm{C}_{4}\left(\mathrm{C}_{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{D}_{4 \mathrm{~h}}\left(\mathrm{D}_{4}\right) \\ & \mathrm{C}_{4 \mathrm{~h}}\left(\mathrm{C}_{4}\right) \\ & \mathrm{C}_{4 \mathrm{v}}\left(\mathrm{C}_{4}\right) \\ & \mathrm{D}_{2 \mathrm{~d}}\left(\mathrm{D}_{2}\right) \\ & \mathrm{S}_{4}\left(\mathrm{C}_{2}\right) \end{aligned}$	$\begin{aligned} & C_{4 v} \otimes \Theta D_{4 h}\left(C_{4 v}\right) D_{2 d} \otimes O D_{4 h}\left(D_{2 d}\right) \\ & S_{4} \otimes \Theta C_{4 h}\left(S_{4}\right) \\ & D_{2 \mathrm{~d}}\left(S_{4}\right) \\ & C_{4 v}\left(C_{2 v}\right) D_{2 d}\left(C_{2 v}\right) \end{aligned}$	$\begin{aligned} & \mathrm{D}_{4 \mathrm{~h}} \otimes \Theta \\ & \mathrm{C}_{4 \mathrm{~h}} \otimes \Theta \\ & \mathrm{D}_{4 \mathrm{~h}}\left(\mathrm{C}_{4 \mathrm{~h}}\right) \\ & \mathrm{D}_{4 \mathrm{~h}}\left(\mathrm{D}_{2 \mathrm{~h}}\right) \\ & \mathrm{C}_{4 \mathrm{~h}}\left(\mathrm{C}_{2 \mathrm{~h}}\right) \end{aligned}$
Orthor.	$\begin{aligned} & \mathrm{D}_{2} \otimes \Theta \\ & \mathrm{D}_{2}\left(\mathrm{C}_{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{D}_{2 \mathrm{~h}}\left(\mathrm{D}_{2}\right) \\ & \mathrm{C}_{2 \mathrm{v}}\left(\mathrm{C}_{2}\right) \end{aligned}$	$\begin{aligned} & C_{2 v} \otimes \Theta D_{2 h}\left(C_{2 v}\right) \\ & C_{2 v}\left(C_{s}\right) \end{aligned}$	$\begin{aligned} & \mathrm{D}_{2 \mathrm{~h}} \otimes \Theta \\ & \mathrm{D}_{2 \mathrm{~h}}\left(\mathrm{C}_{2 \mathrm{~h}}\right) \end{aligned}$
Monocl.	$\begin{aligned} & \mathrm{C}_{2} \otimes \Theta \\ & \mathrm{C}_{2}\left(\mathrm{C}_{1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{2 \mathrm{~h}}\left(\mathrm{C}_{2}\right) \\ & \mathrm{C}_{\mathrm{s}}\left(\mathrm{C}_{1}\right) \end{aligned}$	$\mathrm{C}_{\mathrm{s}} \otimes \Theta \mathrm{C}_{2 \mathrm{~h}}\left(\mathrm{C}_{\mathrm{s}}\right)$	$\begin{aligned} & \mathrm{C}_{2 \mathrm{~h}} \otimes \Theta \\ & \mathrm{C}_{2 \mathrm{~h}}\left(\mathrm{C}_{\mathrm{i}}\right) \end{aligned}$
Triclinic	$\mathrm{C}_{1} \otimes \Theta$	$\mathrm{C}_{\mathrm{i}}\left(\mathrm{C}_{1}\right)$		$\mathrm{C}_{\mathrm{i}} \otimes \Theta$
Hexagonal	$\begin{aligned} & \mathrm{D}_{6} \otimes \Theta \\ & \mathrm{C}_{6} \otimes \Theta \\ & \mathrm{D}_{6}\left(\mathrm{C}_{6}\right) \\ & \mathrm{D}_{6}\left(\mathrm{D}_{3}\right) \\ & \mathrm{C}_{6}\left(\mathrm{C}_{3}\right) \end{aligned}$	$\begin{aligned} & D_{6 h}\left(D_{6}\right) \\ & C_{6 h}\left(C_{6}\right) \\ & C_{6 \text { v }}\left(C_{6}\right) \\ & D_{3 h}\left(D_{3}\right) \\ & C_{3 h}\left(C_{3}\right) \end{aligned}$	$\begin{aligned} & C_{6 v} \otimes \Theta D_{6 v}\left(C_{6 v}\right) D_{3 h} \otimes \Theta D_{6 h}\left(D_{3 h}\right) \\ & C_{3 h} \otimes \Theta C_{6 h}\left(C_{3 h}\right) \\ & D_{3 h}\left(C_{3 h}\right) \\ & C_{6 v}\left(C_{3 v}\right) D_{3 h}\left(C_{3 v}\right) \end{aligned}$	$\begin{aligned} & \mathrm{D}_{6 \mathrm{~h}} \otimes \Theta \\ & \mathrm{C}_{6 \mathrm{~h}} \otimes \Theta \\ & \mathrm{D}_{6 \mathrm{~h}}\left(\mathrm{C}_{6 \mathrm{~h}}\right) \\ & \mathrm{D}_{6 \mathrm{~h}}\left(\mathrm{D}_{3 \mathrm{~d}}\right) \\ & \mathrm{C}_{6 \mathrm{~h}}\left(\mathrm{C}_{3 \mathrm{i}}\right) \end{aligned}$
Trigonal	$\mathrm{D}_{3} \otimes \Theta$ $\mathrm{C}_{3} \otimes \Theta$ $\mathrm{D}_{3}\left(\mathrm{C}_{3}\right)$	$\begin{aligned} & \mathrm{D}_{3 \mathrm{c}}\left(\mathrm{D}_{3}\right) \\ & \mathrm{C}_{3 i}\left(\mathrm{C}_{3}\right) \\ & \mathrm{C}_{3 \mathrm{v}}\left(\mathrm{C}_{3}\right) \end{aligned}$	$\mathrm{C}_{3 \mathrm{v}} \otimes \Theta \mathrm{D}_{3 \mathrm{~d}}\left(\mathrm{C}_{3 \mathrm{v}}\right)$	$\begin{aligned} & \mathrm{D}_{3 \mathrm{~d}} \otimes \Theta \\ & \mathrm{C}_{3 \mathrm{i}} \otimes \Theta \\ & \mathrm{D}_{3 \mathrm{~d}}\left(\mathrm{C}_{3 \mathrm{i}}\right) \end{aligned}$

Table 2. Basic functions.

Table 3. Compatibility table.

D^{j}	$0+$	$1+$	$2+$	$3+$	1/2+	3/2+	5/2+	0 -	1-	2-	3-	1/2-	3/2-	5/2-
$\mathrm{O}_{\mathrm{h}} \otimes \boldsymbol{\Theta}$	1^{+}	4^{+}	$3^{+}+5^{+}$	$2^{+}+4^{+}+5^{+}$	6^{+}	8^{+}	$7^{+}+8^{+}$	1^{-}	4^{-}	$3^{-}+5^{-}$	$2^{-}+4^{-}+5^{-}$	6^{-}	8	$7^{-}+8^{-}$
$\mathrm{O} \otimes \Theta$	1	4	$3+5$	$2+4+5$	6	8	$7+8$	1	4	3+5	$2+4+5$	6	8	$7+8$
$\mathrm{T}_{\mathrm{d}} \otimes \boldsymbol{\Theta}$	1	4	$3+5$	$2+4+5$	6	8	$7+8$	2	5	$3+4$	$1+4+5$	7	8	6+8
$\mathrm{O}_{\mathrm{h}}(\mathrm{O})$	1	4	$3+5$	$2+4+5$	6	8	$7+8$	1	4	$3+5$	$2+4+5$	6	8	$7+8$ $6+8$
$\mathrm{O}_{\mathrm{h}}\left(\mathrm{T}_{\mathrm{d}}\right)$	1	4	$3+5$	$2+4+5$	6	8	$7+8$	2	5	3+4	$1+4+5$	7	8	$6+8$
$\mathrm{T}_{\mathrm{h}} \otimes \Theta$	1^{+}	4^{+}	$2^{+}+4^{+}$	$1^{+}+4^{2+}$	5^{+}	6^{+}	$5^{+}+6^{+}$	1	4	$2^{-}+4^{-}$	$1^{-}+4^{2-}$	5	6^{-}	$5^{-}+6^{-}$
$\mathbf{T} \otimes \otimes$	1	4	$2+4$	$1+4^{2}$	5	6	$5+6$	1	4	$2+4$	$1+4^{2}$	5	6	$5+6$
$\mathrm{T}_{\mathrm{h}}(\mathrm{T})$	1	4	$2+4$	$1+4^{2}$	5	6	$5+6$	1	4	$2+4$	$1+4^{2}$	5	6	$5+6$
$\mathrm{O}_{\mathrm{h}}\left(\mathrm{T}_{\mathrm{h}}\right)$	1^{+}	4^{+}	$2^{+}+3^{+}+4^{+}$	$1^{+}+4^{2+}$	5^{+}	$6^{+}+7^{+}$	$5^{+}+6^{+}+7^{+}$	$1{ }^{-}$	4^{-}	$2^{-}+3^{-}+4^{-}$	$1^{-}+4^{2-}$	5	$6^{-}+7^{-}$	$5^{-}+6^{-}+7^{-}$
$\mathrm{O}(\mathrm{T})$	1	4	$2+3+4$	$1+4^{2}$	5	$6+7$	$5+6+7$	1	4	$2+3+4$	$1+4^{2}$	5	$6+7$	$5+6+7$
$\mathrm{T}_{\mathrm{d}}(\mathrm{T})$	1	4	$2+3+4$	$1+4^{2}$	5	$6+7$	$5+6+7$	1	4	$2+3+4$	$1+4^{2}$	5	6+7	$5+6+7$

3. Discussion of the tables

Table 1. Shubnikov point groups. In this table are given all 90 antiunitary Shubnikov point groups classified into 21 isomorphic sets (each row of the table). Every set contains a proper rotation group (1st column), groups which contain inversion axes and inversion planes of symmetry either as antiunitary (2nd column) or unitary and antiunitary (3 rd column) elements, but do not contain the space inversion I itself. To each set of isomorphic groups is related a centrosymmetrical group (4th column).

Table 2. Basic functions. In the table are given the even basic functions for the three isomorphic sets of cubic groups. Odd basic functions are given only for the groups of the third type (which include inversion axes and inversion planes of symmetry as unitary and antiunitary elements) $\mathrm{T}_{\mathrm{d}} \otimes \Theta, \mathrm{O}_{\mathrm{h}}\left(\mathrm{T}_{\mathrm{d}}\right)$. We have also indicated the corresponding reps of the unitary subgroups.

Table 4a. Multiplication table for $\mathrm{O} \otimes \Theta$.

	1	2	3	4	5	6	7	8
1	$[1]$	2	3	4	5	6	7	8
2	2	$[1]$	3	5	4	7	6	8
3	3	3	$[1+3]+2$	$4+5$	$4+5$	8	8	$6+7+8$
4	4	5	$4+5$	$[1+3+5]+4$	$2+3+4+5$	$6+8$	$7+8$	$6+7+8^{2}$
5	5	4	$4+5$	$2+3+4+5$	$[1+3+5]+4$	$7+8$	$6+8$	$6+7+8^{2}$
6	6	7	8	$6+8$	$7+8$	$[4]+1$	$2+5$	$3+4+5$
7	7	6	8	$7+8$	$6+8$	$2+5$	$[4]+1$	$3+4+5$
8	8	8	$6+7+8$	$6+7+8^{2}$	$6+7+8^{2}$	$3+4+5$	$3+4+5$	$\left[2+4^{2}+5\right]+1+3+5$

Table 4b. Multiplication table for $\mathrm{T} \otimes \Theta$.

	1	2	4	5	6
1	$[1]$	2	4	5	6
2	2	$[1+2]+1$	4^{2}	6	$5^{2}+6$
4	4	4^{2}	$[1+2+4]+4$	$5+6$	$5^{2}+6^{2}$
5	5	6	$5+6$	$[4]+1$	$2+4^{2}$
6	6	$5^{2}+6$	$5^{2}+6^{2}$	$2+4^{2}$	$\left[1+4^{3}\right]+1+2+4$

Table 4c. Multiplication table for $O(T)$.

	1	2	3	4	5	6	7
1	$[1]$	2	3	4	5	6	7
2	2	$[3]$	1	4	6	7	5
3	3	1	$[2]$	4	7	5	6
4	4	4	4	$[1+2+3+4]+4$	$5+6+7$	$5+6+7$	$5+6+7$
5	5	6	7	$5+6+7$	$[4]+1$	$2+4$	$3+4$
6	6	7	5	$5+6+7$	$2+4$	$[4]+3$	$1+4$
7	7	5	6	$5+6+7$	$3+4$	$1+4$	$[4]+2$

Table 5. cGC for even bases: $\alpha_{1}^{e} \times \alpha_{2}^{e}, 5 a, O \otimes \Theta, O_{h}(\Theta)$ and $T_{d} \otimes \Theta, O_{h}\left(T_{d}\right)$ even.

2121 111-	1	3131111	1/2	3131311-	1/2	$3132211-\mathrm{i}$	1/2 *
3132312	1/2	3232111	1/2	3232311	1/2	4141312	1/2
4141512 i	1/2	4142411	1/2*	4142511	1/2	4143111	1/3
4143311	1/6	4143412	1/2*	4242111 -	1/3	4242311	$2 / 3$
4243413	1/2 *	4243513	1/2	4343312	1/2	4343512	$1 / 2$
5151312 -	1/2	5151512 - i	$1 / 2$	5152413	1/2*	5152513	1/2
5153111 -	1/3	5153311	1/6	5153412 -	1/2*	5252111	$1 / 3$
5252311	2/3	5253411 - i	1/2 *	5253511 -i	1/2	5353312 -	$1 / 2$
5353512 i	1/2*	6161411	1	6162111	1/2 *	6162412	1/2
6262413	1	7171411 -	1	7172111	1/2*	7172412 -	$1 / 2$
7272413 -	1	8181423	5/8	8181523 -	3/8	8182211	$1 / 4$
8182312	1/4*	8182512	1/4*	8182522	1/4	8183411	3/10
8183421	3/40	8183511	1/2*	8183521 -	$1 / 8$	8184111	1/4 *
8184311	1/4 *	8184412	9/20	8184422	1/20	8282411 -	2/5
8282421	9/40	8282521 -	3/8	8283111 -	1/4 *	8283311	1/4*
8283412 -	1/20	8283422 -	9/20	8284413 -	3/10	8284423	3/40
8284513	1/2*	8284523	5/40	8383413	2/5	8383423	9/40
8383523	3/8	8384211 - i	1/4	8384312	1/4*	8384512 -i	1/4*
8384522 i	1/4	8484421	5/8	8484521	3/8	2131312 i	*
2132311 -i	*	2141513 i		2142512 -	1	2143511 -i	
2151413 - i		2152412	1	2153411 i		2161711 i	*
2162712 i	*	2171611-i	*	2172612 -i	*	2181813-i	*
2182814 i	*	2183811 i	*	2184812-i	*	3141411	1/4
3141511 -i	3/4*	3142412 -	1	3143413	1/4	3143513	3/4 *
3241413	3/4	$3241513-$	1/4*	3242512 i	*	3243411	3/4
3243511	1/4 *	3151411	3/4*	3151511 -	1/4	3152512	1
3153413 -	3/4 *	3153513 -	$1 / 4$	3251413 -	1/4*	3251513	3/4
3252412 i	*	3253411	1/4 *	3253511	3/4	3161812 -	1
3162813	1 *	3261814 -		3262811	1 *	3171814	1
3172811 -	1 *	3271812 -	1	3272.813	1 *	3181712	1/2*
3181811	1/2	3182611	1/2*	3182812 -	1/2	3183612 -	1/2*
$3183813-$	1/2	3184711 -	1/2 *	3184814	$1 / 2$	3281 612-	1/2*
3281813	1/2	3282711	1/2*	3282814	1/2	3283712 -	1/2*
3283811	1/2	3284611	1/2*	3284812	1/2	4151211	$1 / 3$
4151312	1/6 *	4151512 i	1/2*	4152413 i	$1 / 2$	4152513	1/2*
4153311	1/2*	4153412	1/2	4251411 -	$1 / 2$	4251511 -	1/2*
4252211	$1 / 3$	4252312 i	2/3 *	4253413 - i	$1 / 2$	4253513	1/2*
4351311 -	1/2 *	4351412	1/2	4352 411-i	1/2	4352511	1/2 *
4353211 -i	1/3	4353312 -	1/6 *	4353512 i	1/2*	4161811	1
4162611	2/3 *	4162812	1/3	4261611 -	1/3 *	4261812	2/3
4262612	1/3 *	4262813	2/3	4361612 -	2/3 *	4361813	$1 / 3$
4362814	1	4171813 -	1	4172711 -	2/3 *	4172814	1/3
4271711	$1 / 3$	4271814	2/3	4272712 -	1/3 *	4272811	$2 / 3$
4371712	2/3	4371811	1/3	4372 812-	1	4181711	1/6
4181824	5/6	4182712 -	1/2	4182811	2/5 *	4182821 -	$1 / 10$
4183611	1/6	4183812	8/15*	4183822	3/10	4184612	1/2
4184813	2/5 *	4184823 -	1/10	4281712 -	$1 / 3$	4281811 -	3/5*
4281821 -	$1 / 15$	4282611 -	1/3	4282812 -	1/15*	4282822	3/5
4283612 -	1/3	4283813	1/15*	4283823 -	3/5	4284711 -	1/3
4284814	3/5 *	4284824	1/15	4381611	1/2	4381812 -	2/5*
4381822	1/10	4382612	1/6	4382813 -	8/15	4382823 -	$3 / 10$
4383711 -	1/2	4383814 -	2/5*	4383824	1/10	4384712	1/6
4384821 -	5/6	5161712 -	2/3	5161811 -	1/3 *	5162812	1 *
5261711 -i	1/3	5261814 -i	2/3 *	5262712 -i	1/3	5262811 - i	2/3 *
5361813 -	1 *	5362711 -	2/3	5362814	$1 / 3$ *	5171612	2/3

Table 5a-continued.

5171813	1/3 *	5172814	*		5271611 i	$1 / 3$	5271812	2/3*
5272612-i	$1 / 3$	5272813 i	2/3*		5271811 -	1 *	5372611	2/3
5372812 -	1/3 *	5181711 -	1/2*		5181824 -	1/2*	5182712 -	1/6 *
5182811 -	2/3	5182821 -	1/2*	*	5183611 -	1/2 *	5183822	1/2*
5184612	1/6 *	5184813	2/3		5184823 -	1/6 *	5281612 - i	1/3*
5281813 i	1/3	5281823 i	$1 / 3$ *	*	5282711 i	$1 / 3$ *	5282814	1/3
5282824-i	1/3 *	5283712	$1 / 3$ *	*	5283811 -i	$1 / 3$	5283821	1/3*
5284611 -i	1/3 *	5284812 - i	$1 / 3$		5284822 -i	1/3 *	5381611 -	1/6*
5381812	2/3	5381822 -	1/6 *		5382612	1/2	5382823	1/2
5383711	1/6 *	5383814 -	2/3		5383824 -	1/6 *	5384712	.1/2
5384821 -	1/2 *	6171513 -	1		6172211 -i	1/2	$6172512-\mathrm{i}$	1/2 *
6271211 i	1/2	6271512 - i	1/2*		6272511	1	6181312	1/2
6181512 i	$1 / 2$	6182411	1/4*		6182511	3/4	6183311	1/2
6183412	1/2 *	6184413	3/4*	*	6184513	$1 / 4$	6281411 -	3/4
6281511	$1 / 4$	6282311	1/2		6282412 -	1/2 *	6283413 -	1/4*
6283513	3/4	6284312	1/2		6284512 - i	1/2	7181311 -	1/2
7181412	1/2 *	7182413 -	3/4*	*	7182513 -	1/4	7183312	1/2
$7183512-\mathrm{i}$	1/2	7184411	$1 / 4$ *	*	7184511	3/4	7281413 -	1/4
7281513	3/4	7282312	1/2		7282512	1/2	7283411	3/4*
7283511 -	$1 / 4$	7284311 -	1/2		7284412 -	1/2*		

Table 5b. $\mathrm{T} \otimes \Theta, \mathrm{T}_{\mathrm{h}}(\mathrm{T})$.

$2122121-$	$1 / 2 *$	4141422	$1 / 2$	$4142423-$	$1 / 2$	4243421	$1 / 2$
$4343422-$	$1 / 2$	$6161441-$	$3 / 8$	6162432	$1 / 4 *$	6162442	$1 / 4$
$6163433-$	$1 / 2 *$	6163443	$1 / 8$	6262443	$3 / 8$	6264431	$1 / 2 *$
6264441	$1 / 8$	6363441	$3 / 8$	$6364121-$	$1 / 4$	$6364432-$	$1 / 4 *$
6364442	$1 / 4$	$6464443-$	$3 / 8$	6162121	$1 / 4$	2141423	$3 / 4 *$
2143421	$3 / 4 *$	$2241421-$	$1 / 4 *$	2242442	$1, *$	$2243423-$	$1 / 4 *$
5161422	$1 / 2$	$5162423-$	$3 / 4$	5164421	$1 / 4$	$5261423-$	$1 / 4$
5263421	$3 / 4$	$5264422-$	$1 / 2$				

Table 5c. $\mathrm{O}(\mathrm{T}), \mathrm{T}_{\mathrm{d}}(\mathrm{T})$.

2121311-	1	3131211 -	1	2131111	1	4141 111-	1/3
4141211	1/3w	4141311	1/3w	4142 413-i	1/2*	4142423	1/2
4143412 - i	1/2 *	4143422	1/2	4242111 -	$1 / 3$	4242211	1/3w
4242311	1/3w	4243411	1/2*	4243421	1/2	4343111 -	1/3
4343211	$1 / 3$	4343311	$1 / 3$	5151411	1/2	5151412 -i	1/2
5152111	1/2*	5152413	$1 / 2$	5252411	1/2	5252412	1/2
6161411 -	1/2w	6161412	1/2w	6162311	1/2*	6162413	1/2
6262411 -	1/2w	6262412 - i	1/2w	7171411 -	1/2w	7171412	1/2w
7172211	1/2 *	7172413	1/2	7272 411-	1/2w	7272412 -i	1/2w
2141411	w	2142412	$\underline{\text { w }}$	2143413 -	1	2151612	1
2152611	1 *	2161712 -	1	2162711	1	2171511	1
2172512		3141411	$\underline{\text { w }}$	3142412	w	3143413 -	1
3151711 -		3152712		3161512 -	1 *	3162511 -	1 *
3171612	1	3172611 -	1	4151512 -	1/3*	4151611	1/3w
4151712	1/3w	4152511	1/3 *	4152612 -	$1 / 3 \underline{w}$	4152711	1/3w
4251512 i	1/3 *	4251611 -i	1/3w	4251712 - i	$1 / 3 \underline{w}$	4252511	1/3 *
4252612 - i	1/3w	4252711	1/3w	4351511 -	1/3 *	4351612 -	$1 / 3$
4351711	$1 / 3$	4352512	1/3 *	4352611	$1 / 3$	4352712	$1 / 3$

Table 5c-continued

4161511	1/3w	4161 612-	1/3 *	4161711	1/3w*	4162512 -	1/3w
4162611	1/3 *	4162712	1/3w*	4261511 i	$1 / 3 \underline{w}$	4261612 - i	1/3 *
4261711 i	1/3w*	4262512 i	1/3w	4262611 - i	1/3*	4262712 - i	1/3w*
4361512 - i	$1 / 3$	4361 611-	1/3 *	4361712	1/3 *	4362511	1/3
4362612	1/3 *	4362711	1/3 *	4171512	1/3w	4171611 -	1/3w*
4171712	1/3 *	4172511	1/3w	4171 612-i	1/3w	4172711 -	1/3 *
4271512	1/3w	4271611 i	1/3w*	4271712 - i	1/3 *	4272511	1/3w
4272612 - i	1/3w*	4272711 - i	$1 / 3 *$	4371 511-	1/3	4371612	1/3 *
4371711 -	1/3*	4372512 -	$1 / 3$	4372611	1/3 *	4372712	1/3 *
5161211	1/2	5161413	1/2 *	5162411 -	1/2w*	5162412 i	1/2w*
5261411 -	1/2w*	5261412 - i	1/2w*	5262 211-	1/2	5262413	1/2 *
5171411	1/2w*	5171412 - i	1/2w*	5172311	1/2	5172413	1/2 *
5271311	1/2	$5271413-$	1/2*	5272411 -	1/2w*	5272412 - i	1/2w*
6171111	1/2*	$6171413-$	1/2	6172411	1/2	6172412	1/2
6272411 -	$1 / 2$	6271412 i	1/2	6272111	1/2 *	6272413	1/2

$\mathrm{w}=\exp (\mathrm{i} / 3), \underline{\mathrm{w}}=\exp (-\mathrm{i} / 3)$.
Table 6. CGC for odd bases: $\alpha_{1}^{\mathrm{o}} \times \alpha_{2}^{\mathrm{o}} ; \alpha_{1}^{\mathrm{o}} \times \alpha_{2}^{\mathrm{e}} ; \alpha_{1}^{\mathrm{e}} \times \alpha_{2}^{\mathrm{o}}$.

$\alpha_{1} \alpha_{2}$	$\alpha_{1}^{\circ} \otimes \alpha_{2}^{\circ}$	$\alpha_{1}^{0} \otimes \alpha_{2}^{\mathrm{e}}$	$\alpha_{1}^{\mathrm{e}} \otimes \alpha_{2}^{\text {o }}$	$\alpha_{1} \alpha_{2}$	$\alpha_{1}^{\circ} \otimes \alpha_{2}^{\circ}$	$\alpha_{1}^{\circ} \otimes \alpha_{2}^{e}$	$\alpha_{1}^{\mathrm{e}} \otimes \alpha_{2}^{\text {o }}$
22	1	$\overline{1}$	$\overline{1}$	35	$4+5$ *	$\overline{4}+5$ *	4*+5
33	$1+2 *+\overline{3}$	$1 *+2+\overline{3}$	$\overline{1} *+\overline{2}+\overline{3}$	36	8*	$\overline{8}$ *	8*
44	$1+\overline{3}+\overline{4} *+5$	$1+\overline{3} *+\overline{4} *+5$	$1+3 *+\overline{4} *+5$	37	8*	$\overline{8} *$	8*
55	$1+\overline{3}+\overline{4} *+5$	$1+\overline{3} *+4 *+5$	$1+3 *+4 *+5$	38	$\overline{6} *+\overline{7} *+8$	$6 *+7 *+8$	$6 *+7 *+\overline{8}$
66	$1 *+\overline{4}$	$1+\overline{4}$ *	$\overline{1}+4 *$	45	$2+3 *+4+5 *$	$\overline{2}+3+4+5$ *	$\overline{2}+\overline{3}+4+5$ *
77	$1+\overline{4}$	1+4*	$\overline{1}+\overline{4}$ *	46	$\overline{6}+8 *$	6+8*	$\overline{6} *-\overline{8}$
88	$1 *+2+3 *+\ldots$	$\overline{1}+\overline{2} *+3 *+\ldots$	$1+2 *+3 *+\ldots$	47	$7+8 *$	$\overline{7}+8 *$	$\overline{7} *-\overline{8}$
23	3	$\overline{3}$	3*	48	$\overline{6} *+\overline{7} *+\ldots$	$\overline{6} *+\overline{7} *+\ldots$	$\overline{6} *+\overline{7} *+\ldots$
24	$\overline{5}$	5	5	56	$\overline{7} *+\overline{8}$	$\overline{7} *+\overline{8}$	$7+\overline{8}$ *
25	4	$\overline{4}$	4	57	$6 *+\overline{8}$	$6 *+\overline{8}$	$6+\overline{8} *$
26	7	$\overline{7}$	7*	58	$6+7+\ldots$	$6+7+\ldots$	$6+\overline{7}+\ldots$
27	6	$\overline{6}$	6*	67	2+5*	$2 *+5$	$\overline{2} *+\overline{5}$
28	$\overline{8}$	8	8*	68	$3+\overline{4} *+5$	$3+4+5$ *	$\overline{3}+4+\overline{5}$ *
34	$\overline{4} *+5$	$4 *+5$	$\overline{4}+\overline{5}$ *	78	$3+\overline{4} *+5$	$3+4+5$ *	$\overline{3}+4+\overline{5}$ *

Table 3. Compatibility table. This table is concerned with the relation between the irreducible coreps of a given group and those of the various subgroups of the group. It indicates how the irreducible coreps of the generalised full orthogonal group $D^{j \pm}$ break up into the irreducible coreps of the cubic groups (as all magnetic point groups are subgroups of $O(3) \otimes \Theta)$. The numbers correspond to the indices of the coreps; the upper index specifies the number of times the corep is contained in the decomposition of the corep of the supergroup.

Table 4a, b, c. Multiplication tables. The numbers correspond to the indices α_{1}, α_{2}, α of the coreps; the upper index specifies how many times the corep is contained in the decomposition of the corresponding direct product. The indices of the coreps contained in the symmetrised square of a corep are given in square brackets.

Table 5a, b, c. CGC for even bases: $\alpha_{1}^{\mathrm{e}} \times \alpha_{2}^{\mathrm{e}}$. In the tables we list all non-zero CGC but the trivial ones for the group in question. In some cases to save space we do not give those coefficients of the group which can be obtained simply by renumbering the
corresponding coefficients of the supergroup. The coefficients which change sign under the substitution $\alpha_{1} a_{1} \leftrightarrow \alpha_{2} a_{2}$ are marked by an asterisk. For the groups constructed by supplementing a group with the inversion I the CGC are also omitted. They are just those given for the group before we supplement with the space inversion (12). Because of typographical considerations, the square root signs are omitted, e.g. $3132211-\mathrm{i} \frac{1}{2}$ means [3132|211] $=-\mathrm{i} \sqrt{\frac{1}{2}}$.

Table 6. CGC for odd bases: $\alpha_{1}^{0} \times \alpha_{2}^{0} ; \alpha_{1}^{0} \times \alpha_{2}^{e} ; \alpha_{1}^{e} \times \alpha_{2}^{0}$. As all CGC for the case $\alpha_{1}^{\mathrm{e}} \times \alpha_{2}^{\mathrm{e}}$ are given in table 5a, this table shows how the sign of the coefficient will change if one or both of the indices ' e ' is substituted by ' o '.

The use of the table will be discussed by an example. The odd basic functions are given in table 2, where $I \Psi_{m}^{j}=-\Psi_{m}^{j}$. These groups are isomorphic to the group $\mathrm{O} \otimes \Theta$ and for even bases $\alpha_{1}^{\mathrm{e}} \times \alpha_{2}^{\mathrm{e}}$ all CGC are listed in table 5a. After the transition to the odd basis ($\alpha_{i}^{\mathrm{e}} \rightarrow \alpha_{i}^{\mathrm{o}}$) these coefficients are multiplied by ± 1. The conservation or change of the sign is indicated in table 6 , where for example in the row ' 34 ' is written (the lower index denotes the corep multiplicity)

$\alpha_{1} \alpha_{2}$	$\alpha_{1}^{\mathrm{o}} \times \alpha_{2}^{\mathrm{o}}$	$\alpha_{1}^{\mathrm{o}} \times \alpha_{2}^{\mathrm{e}}$	$\alpha_{1}^{\mathrm{e}} \times \alpha_{2}^{\mathrm{o}}$
34	$\overline{4}^{*}+5$	$4^{*}+\overline{5}$	$\overline{4}+\overline{5}^{*}$.

This means that $D^{3} \boxtimes D^{4}=D^{4} \oplus D^{5}$ and for even bases all coefficients [$3^{\mathrm{e}} a_{1} 4^{\mathrm{e}} a_{2} \mid 4^{\mathrm{e}} 1 a$] and $\left[3^{\mathrm{e}} a_{1} 4^{\mathrm{e}} a_{2} \mid 5^{\mathrm{e}} 1 a\right.$] are given in table $5 a$. The coefficients change sign after the transition

$$
\alpha_{1}^{\mathrm{e}} \times \alpha_{2}^{\mathrm{e}} \rightarrow \alpha_{1}^{\mathrm{o}} \times \alpha_{2}^{\mathrm{o}}, \quad \text { or } \quad \alpha_{1}^{\mathrm{o}} \times \alpha_{2}^{\mathrm{e}}, \quad \text { or } \quad \alpha_{1}^{\mathrm{e}} \times \alpha_{2}^{\mathrm{o}},
$$

if there is a line above the corep number α, and preserve the sign if the line is absent. The asterisk indicates that the coefficients change sign after the transition $\alpha_{1} a_{1} \leftrightarrow \alpha_{2} a_{2}$. For example, we have

$$
[32,41 \mid 413] \equiv\left[3^{\mathrm{e}} 2,4^{\mathrm{e}} 1 \mid 4^{\mathrm{e}} 13\right]=\sqrt{\frac{3}{4}}, \quad[32,41 \mid 513] \equiv\left[3^{\mathrm{e}} 2,4^{\mathrm{e}} 1 \mid 5^{\mathrm{e}} 13\right]=-\sqrt{\frac{1}{4}},
$$

and with the help of (14), we find

$$
\begin{aligned}
{\left[3^{\mathrm{e}} 2,4^{\mathrm{e}} 1 \mid 4^{\mathrm{e}} 13\right] } & =-\left[3^{\circ} 2,4^{\mathrm{o}} 1 \mid 4^{\mathrm{e}} 13\right]=+\left[4^{\circ} 1,3^{\circ} 2 \mid 4^{\mathrm{e}} 13\right] \\
& =+\left[3^{\mathrm{o}} 2,4^{\mathrm{e}} 1 \mid 4^{\mathrm{o}} 13\right]=-\left[4^{\mathrm{e}} 1,3^{\mathrm{o}} 2 \mid 3^{\mathrm{o}} 13\right] \\
& =-\left[3^{\mathrm{e}} 2,4^{\circ} 1 \mid 4^{\mathrm{o}} 13\right]=-\left[4^{\circ} 1,3^{\mathrm{e}} 1 \mid 4^{\mathrm{o}} 13\right]=\sqrt{\frac{3}{4}}, \\
{\left[3^{\mathrm{e}} 2,4^{\mathrm{e}} 1 \mid 5^{\mathrm{e}} 13\right] } & =+\left[3^{\mathrm{o}} 2,4^{\mathrm{o}} 1 \mid 5^{\mathrm{e}} 13\right]=+\left[4^{\mathrm{o}} 1,3^{\mathrm{o}} 2 \mid 5^{\mathrm{e}} 13\right] \\
& =-\left[3^{\mathrm{o}} 2,4^{\mathrm{e}} 1 \mid 5^{\mathrm{o}} 13\right]=-\left[4^{\mathrm{e}} 1,3^{\mathrm{o}} 2 \mid 5^{\circ} 13\right] \\
& =-\left[3^{\mathrm{c}} 2,4^{\mathrm{o}} 1 \mid 5^{\mathrm{o}} 13\right]=+\left[4^{\mathrm{o}} 1,3^{\mathrm{e}} 2 \mid 5^{\circ} 13\right]=-\sqrt{\frac{1}{4}} .
\end{aligned}
$$

Only in the rows ' 88 ', ' 48 ' and ' 58 ' of table 6 are there dots, which mean that besides the coefficients indicated in these rows, in table 7 are given additional coefficients. They change in a more complicated way after the transition to odd bases (because of the repeated equivalent coreps in the Kronecker product).

Table 7. Additional CGC for $\mathrm{T}_{\mathrm{d}} \otimes \Theta, \mathrm{O}_{\mathrm{h}}\left(\mathrm{T}_{\mathrm{d}}\right)$. In this table are given the additional coefficients for the coreps of $T_{d} \otimes \Theta$ and $O_{h}\left(T_{d}\right)$. The asterisks indicate that the signs of the coefficients change after the replacement of the basic functions $\Psi_{a_{1}}^{\alpha_{1}} \Psi_{a_{2}}^{\alpha_{2}} \leftrightarrow \Psi_{a_{2}}^{\alpha_{2}} \Psi_{a_{1}}^{\alpha_{1}}$. Because of typographical considerations the square root signs are omitted, e.g. $8182522-\mathrm{i} \frac{1}{4}$ means $[8182 \mid 522]=-\mathrm{i} \sqrt{\frac{1}{4}}$.

Table 7. Additional CGC for $\mathrm{T}_{\mathrm{d}} \otimes \Theta, \mathrm{O}_{\mathrm{h}}\left(\mathrm{T}_{\mathrm{d}}\right) \cdot(a) \mathrm{T}_{\mathrm{d}} \otimes \Theta, \mathrm{O}_{\mathrm{h}}\left(\mathrm{T}_{\mathrm{d}}\right)-\alpha_{1}^{\circ} \otimes \alpha_{2}^{\circ}$.

$8181413-$	$2 / 5$	8181423	$9 / 40$	8181523	$3 / 8$	8182512	i	$1 / 4 *$
$8182522-\mathrm{i}$	$1 / 4$	$8183411-$	$3 / 10$	$8183421-$	$3 / 40$	8183511	$1 / 2 *$	
8183521	$1 / 8$	$8184412-$	$1 / 20$	$8184422-$	$9 / 20$	8282421	$5 / 8$	
8282521	$3 / 8$	8283412	$9 / 20$	$8283422-$	$1 / 20$	$8284413-$	$3 / 10$	
$8284423-$	$3 / 40$	8284513	$1 / 2 *$	$8284523-$	$1 / 8$	8383423	$5 / 8$	
$8383523-$	$3 / 8$	$8384512-\mathrm{i}$	$1 / 4 *$	$8384522-\mathrm{i}$	$1 / 4$	$8484411-$	$2 / 5$	
8484421	$9 / 40$	$8484521-$	$3 / 8$	4181814	$2 / 3$	4181824	$1 / 6 *$	
$4182821-$	$1 / 2 *$	4183812	$2 / 3$	$4183822-$	$1 / 6 *$	$4184823-$	$1 / 2 *$	
$4281811-$	$1 / 3$	4281821	$1 / 3 *$	4282812	$1 / 3$	4282822	$1 / 3 *$	
$4283813-$	$1 / 3$	4283823	$1 / 3 *$	4284814	$1 / 3$	$4284824-$	$1 / 3 *$	
4381822	$1 / 2 *$	$4382813-$	$2 / 3$	4382823	$1 / 6 *$	4383824	$1 / 2 *$	
$4384811-$	$2 / 3$	$4384821-$	$1 / 6 *$	$5181814-$	$2 / 5 *$	$5181824-$	$1 / 10$	
5182821	$5 / 6$	5183812	$2 / 5 *$	$5183822-$	$1 / 10$	$5184813-$	$8 / 15 *$	
$5184823-$	$3 / 10$	5281813	i	$1 / 15 *$	$5281823-\mathrm{i}$	$3 / 5$	$5282814-\mathrm{i}$	$3 / 5 *$
$5282824-\mathrm{i}$	$1 / 15$	5283811	i	$3 / 5 *$	5283821 i	$1 / 15$	$5284812-\mathrm{i}$	$1 / 15 *$
$5284822-\mathrm{i}$	$3 / 5$	$5381812-$	$8 / 15 *$	$5381822-$	$3 / 10$	5382813	$2 / 5 *$	
$5382823-$	$1 / 10$	5383824	$5 / 6$	$5384811-$	$2 / 5 *$	5384821	$1 / 10$	

(b) $\mathrm{T}_{\mathrm{d}} \otimes \Theta, \mathrm{O}_{\mathrm{h}}\left(\mathrm{T}_{\mathrm{d}}\right)-\alpha_{1}^{\mathrm{e}} \otimes \alpha_{2}^{\circ}$.

8181413	1/2*	8181423 -	1/8	8181513 -	3/10	$8181523-$	3/40
8182512	9/20	8182522 - i	1/20	8183421 -	3/8	8183521 -	5/8
8184412 -	1/4 *	8184422 -	$1 / 4$	8281512 i	1/20	8281522 i	9/20
8282411	1/2 *	8282421	1/8	8282511 -	3/10	8282521 -	3/40
8283412 -	1/4*	8283422	$1 / 4$	8284423 -	3/8	8284513	2/5
8284523 -	$9 / 40$	8381421 -	3/8	8381511 -	2/5	8381521	9/40
8382412 -	1/4 *	8382422	1/4	8383413	1/2*	8383423	1/8
8383513	3/10	8383523	3/40	8384512 i	1/20	8384522 i	9/20
8481412 -	1/4*	8481422 -	1/4	8482423 -	3/8	8482523	5/8
8483512	9/20	8483522 -i	1/20	8484411	1/2 *	8484421 -	1/8
8484511	3/10	8484521	3/40	4181814	8/15*	4181824	3/10
4182811 -	2/5*	4182821	1/10	4183822	5/6	4184813 -	2/5*
4184823	$1 / 10$	4281811	1/15*	4281821 -	3/5	4282812 -	3/5 *
4282822 -	1/15	4283813 -	3/5 *	4283823 -	$1 / 15$	4284814 -	1/15*
4284824	3/5	4381812	2/5*	4381822 -	1/10	4382823 -	5/6
4383814	2/5*	4383824 -	1/10	4384811 -	8/15*	4384821 -	3/10
5181824	1/2*	5182811 -	2/3	5182821	1/6 *	5183822 -	1/2 *
5184813	2/3	5184823	1/6 *	5281813 i	1/3	5281823 -i	1/3 *
5282814 i	$1 / 3$	5282824	1/3*	5283811 -i	1/3	5283821 - i	1/3*
5284812 -i	$1 / 3$	5284822	1/3*	5381812	2/3	5381822	1/6 *
5382823 -	1/2*	5383814 -	$2 / 3$	5383824	1/6 *	5384821	1/2 *

(c) $\mathrm{T}_{\mathrm{d}} \otimes \Theta, \mathrm{O}_{\mathrm{h}}\left(\mathrm{T}_{\mathrm{d}}\right)-\alpha_{1}^{\mathrm{o}} \otimes \alpha_{2}^{e}$.

$4181814-$	$2 / 3$	4181824	$1 / 6$	$4182821-$	$1 / 2 *$	$4183812-$	$2 / 3$
$4183822-$	$1 / 6 *$	$4184823-$	$1 / 2 *$	4281811	$1 / 3 *$	4281821	$1 / 3 *$
$4282812-$	$1 / 3$	4282822	$1 / 3 *$	4283813	$1 / 3$	4283823	$1 / 3 *$
$4284814-$	$1 / 3$	$4284824-$	$1 / 3 *$	4381822	$1 / 2 *$	4382813	$2 / 3$
4382823	$1 / 6 *$	4383824	$1 / 2 *$	4384811	$2 / 3$	$4384821-$	$1 / 6 *$
$5181814-$	$2 / 3 *$	5181824	$1 / 10$	$5182811-$	$8 / 15 *$	$5182821-$	$3 / 10$
5183812	$2 / 5 *$	$5183822-$	$1 / 10$	5184823	$5 / 6$	5281813 i	$3 / 5 *$
5281823 i	$1 / 15$	$5282814-\mathrm{i}$	$1 / 15 *$	5282824 i	$3 / 5$	5283811	i
$52 / 15 *$							
$5283821-\mathrm{i}$	$3 / 5$	$5284812-\mathrm{i}$	$3 / 5 *$	$5284822-\mathrm{i}$	$1 / 15$	5381822	$5 / 6$
5382813	$2 / 5 *$	$5382823-$	$1 / 10$	$5383814-$	$8 / 15 *$	$5383824-$	$3 / 10$
$5384811-$	$2 / 5 *$	5384821	$1 / 10$				

Acknowledgment

The authors are indebted to Professor A P Cracknell for his interest and encouragement in this work.

References

Aviran A and Litvin D B 1973 J. Math. Phys. 141491
Bradley C J and Cracknell A. P 1972 The Mathematical Theory of Symmetry in Solids (Oxford: Clarendon) van den Broek P M 1979 J. Math. Phys. 202028
Cracknell A P 1974 Magnetism in Crystalline Materials (Oxford: Pergamon)
Dirl R 1980 J. Math. Phys. 21961
Kotzev J N 1972 To the Corepresentation Theory of Magnetic Groups (Kharkov: IRE AN USSR)

- 1974 Sov. Phys. Crystallogr. 19286

Kotzev J N and Aroyo M I 1977 Comm. JINR Dubna P17-10987
-_ 1978a Comm. JINR Dubna P17-11906
__ 1978b Comm. JINR Dubna P17-11907
_ 1978c Comm. JINR Dubna P17-11908
1979 Comm. JINR Dubna P17-12948

- 1980 J. Phys. A: Math. Gen. 132275

Leushin A M 1968 Tables of Functions Transforming by the Irreducible Representations of Crystallographic Point Groups (Moscow: Nauka)
Racah G 1949 Phys. Rev. 761352
Rudra P 1974 J. Math. Phys. 152031
Rudra P and Sikdar M K 1976 J. Phys. C: Solid State Phys. 9509

- 1977 J. Phys. C: Solid State Phys. 1075

Sacata I 1974 J. Math. Phys. 151.710
Wigner E D 1959 Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (New York: Academic) ch 26

